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Introduction
Most mammalian brain cells develop from neural progenitor or stem
cells that reside in the ventricular and subventricular zone. Interest-
ingly, in rodents and primates, neurogenesis does not end when the
olfactory bulb reaches adult size but rather continues throughout life
(Kaplan et al., 1985; Kuhn et al., 1996; Pencea et al., 2001). For
neurons at two locations in the olfactory bulb, the granule cell layer
and glomerular layer, a persistent proliferative activity of progenitor
cells can be observed in the subventricular zone (SVZ) of the lateral
ventricles. The committed neuronal progenitor cells migrate rostrally
through the remnant of the embryonic olfactory ventricle wall, the
so-called rostral migratory stream (RMS), towards the olfactory
bulb. Once the olfactory bulb is reached, the majority of cells
disperse throughout the granule cell layer to develop into
GABAergic granule cells. A small percentage, however, moves into
the periglomerular region to develop into interneurons of mostly
GABAergic and dopaminergic phenotype.

Elimination as well as long-term survival of young 
neurons
The continuous addition of new neurons to the olfactory bulb leads
to substantial growth of the structure over the adult life of a rodent,
which is achieved mostly through an increase in neuronal density
(Kaplan et al., 1985). Yet, the amount of proliferating and migrating
cells appears to outnumber the growth rate of the olfactory bulb, and
therefore, we investigated cell death within the neurogenic regions of
the adult brain and found an up to 100-fold higher incidence of
apoptotic cell death within the SVZ, RMS and olfactory bulb
compared with non-neurogenic regions (Biebl et al., 2000).

The coexistence of neurogenesis and cell death in the olfactory
bulb leads to the question, whether old cells are replaced or whether
the number of developing neurons is adjusted to the necessary
amount. After injecting rats at 2 months of age with bromodeoxy-
uridine (BrdU), we quantified the newly generated cells over a period
of 19 months (Winner et al., 2002). A peak of new neurons is reached
in the olfactory bulb 1 month after BrdU injection, when the labeled
cells have finished migration from the ventricle wall. At this point the
majority of new cells (>90%) express the mature neuronal marker
NeuN, although the first cells begin expressing NeuN already as
early as 7–10 days after birth. Thereafter, we observed a reduction of
BrdU-positive cells to ~50%. We confirm by dUTP-nick end labeling
(TUNEL) that progenitors and young neurons undergo pro-
grammed cell death. Nevertheless, cells that survived the first
3 months after BrdU injection were detectable as granule cells for up
to 19 months. A similar elimination of newly generated neurons was
observed for the periglomerular interneurons (Winner et al., 2002).
Rather than replacing old neurons, these results suggest that new
neurons are added to the adult olfactory bulb and that apoptotic
elimination of young neurons is used to control the growth of these
neuronal populations in the olfactory bulb.

Sensory stimulation of olfactory neurogenesis
It is well established that during embryonic brain development a
large proportion of neural progenitors and young neurons are elimi-
nated by programmed cell death unless the cells receive synaptic
input or trophic support (for a review, see Oppenheim, 1991). Newly
generated neurons in the adult brain depend on sensory stimulation
as demonstrated by decreased neurogenesis due to increased cell
death after naris closure (Corotto et al., 1994), whereas sensory stim-
ulation through exposure to novel odorants had the opposite effect
(Rochefort et al., 2002). On the other hand, exposure to an enriched
environment and physical activity, such as voluntary wheel running,
increase neurogenesis in the dentate gyrus of adult mice and rats
(Kempermann et al., 1997; Nilsson et al., 1999); but no difference in
SVZ progenitor proliferation or neurogenesis in the olfactory bulb
was detectable under these conditions (Brown et al., 2003).
Conversely, odorant enrichment was ineffective in raising the
hippocampal neurogenesis level (Rochefort et al., 2002), thus
arguing for local, yet unidentified mechanisms that specify neuro-
genic signals in the adult brain. Using anosmic mice, Alvarez-Buylla
and colleagues found that sensory input was critical for the survival
of young granule cells during maturation, and once synaptically
connected, their survival depended on the level of activity that they
received (Petreanu and Alvarez-Buylla, 2002).

Molecular regulators of olfactory neurogenesis
Direct mitogenic stimulation of progenitor cells in the adult brain
appears to be mediated via growth factors and trophic factors. It is
still unclear to what extend endogenous production of several candi-
date growth factors, such as FGF-2 and BDNF, play a role in the
ongoing spontaneous olfactory bulb neurogenesis. Possible mecha-
nisms include local expression or direct action of factors passing
through the blood-brain barrier. But other mechanisms, such as
angiogenesis, could also be triggered, which have a secondary posi-
tive effect on neurogenesis (Palmer et al., 2000; Louissaint et al.,
2002; Shen et al., 2004). In this context it is important to note, that
several blood-derived growth factors such as erythropoietin and
vascular endothelial growth factor (VEGF) are potent stimulators of
neurogenesis, when applied directly into the ventricular system
(Shingo et al., 2001; Jin et al., 2002; Schänzer et al., 2004).

The effect of neurotransmitter systems on adult neurogenesis has
been extensively studied in the hippocampus. Glutamatergic input
from the entorhinal cortex has a negative impact on granule cell
production (Cameron et al., 1995; Bernabeu and Sharp, 2000;
Kitamura et al., 2003; Nacher et al., 2003), whereas the serotonergic
input from the raphé nuclei is an activator of hippocampal neuro-
genesis. Treatments with the antidepressants, which act as stimula-
tors of the serotonergic system, have demonstrated a positive
influence neurogenesis (Malberg et al., 2000; Czeh et al., 2001;
Santarelli et al., 2003). In a recent study we were able to demonstrate
that neurogenesis in the olfactory bulb as well as in the dentate gyrus
is reduced after lesion of the cholinergic basal forebrain system using
immunotoxin lesions (Cooper-Kuhn et al., 2004). These studies
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indicate that the extracellular milieu in the neurogenic regions can be
substantially influenced by the release of neurotransmitters.
However, it remains to be shown, whether and at what stage the
immature cells express neurotransmitters receptors in order become
directly responsive to these signals.
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